skip to main content


Search for: All records

Creators/Authors contains: "Brady, Lucas T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum control aims to manipulate quantum systems toward specific quantum states or desired operations. Designing highly accurate and effective control steps is vitally important to various quantum applications, including energy minimization and circuit compilation. In this paper we focus on discrete binary quantum control problems and apply different optimization algorithms and techniques to improve computational efficiency and solution quality. Specifically, we develop a generic model and extend it in several ways. We introduce a squaredL2-penalty function to handle additional side constraints, to model requirements such as allowing at most one control to be active. We introduce a total variation (TV) regularizer to reduce the number of switches in the control. We modify the popular gradient ascent pulse engineering (GRAPE) algorithm, develop a new alternating direction method of multipliers (ADMM) algorithm to solve the continuous relaxation of the penalized model, and then apply rounding techniques to obtain binary control solutions. We propose a modified trust-region method to further improve the solutions. Our algorithms can obtain high-quality control results, as demonstrated by numerical studies on diverse quantum control examples.

     
    more » « less
  2. null (Ed.)
    Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances. 
    more » « less